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We have studied dielectric relaxation in liquid-impregnated porous solids. The samples were

constructed from either glued sand grains or sintered polypropylene beads. We

experimentally obtain two relaxations originating from the bulk of the sample. Electrode

effects are seen at low frequencies, only for high liquid conductivities. The two bulk

relaxations are interpreted as being due to diffusion in the electrochemical double layer

surrounding the solid grains, and as a Maxwell—Wagner relaxation due to the heterogeneity

of the samples, respectively. The experimental results can be qualitatively reproduced by

calculations using the grain consolidation model, which was extended to take into account

interfacial effects. The permittivity at high (megahertz) frequencies can be understood by

using simple mixing laws. We also propose an equivalent circuit for the electrical properties

of a liquid-impregnated porous solid.
1. Introduction
Despite considerable efforts the dielectric properties of
impregnated porous media are still poorly under-
stood. The dielectric properties of porous materials
are of importance in many circumstances, and it is
desirable to obtain a thorough understanding of these
phenomena. We mention here electrical insulation
systems, where it is obvious that the dielectric proper-
ties are of interest, but dielectric measurements are
also often used as a non-destructive tool for diag-
nosing, e.g., excess humidity in cement [1].

In order to facilitate the study of impregnated por-
ous solids, one often uses artificial ‘‘ rocks ’’, e.g., sin-
tered glass spheres. Such a porous material can be
impregnated with a liquid, e.g., salty water.

The construction of artificial rocks facilitates the
study of multiphase systems. It is desirable that the
solid component is as homogeneous as possible and
does not consist of grains of different materials (as can
be the case for natural sedimentary rock). Further-
more, the results are easier to interpret if both the solid
and the pore fluid do not display any intrinsic dielec-
tric relaxations. Unless one wants to study how such
relaxations are influenced by the presence of other
phases, materials such as polypropylene, which has
very low dispersion, is of practical use for fabrication
of ‘‘ artificial rocks ’’.

In a series of articles [2—7], we have discussed
various subjects related to the dielectric behaviour of
liquid-impregnated porous solids. In this article we
present a thorough theoretical and experimental study
of the dielectric properties of porous solids consisting

of glued sand grains or of sintered polypropylene.
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Experimentally, we study the dependence of the
permittivity and alternating-current (a.c.) conductivity
on frequency, porosity and liquid conductivity.
The results are interpreted in the framework of
the grain consolidation model (GCM). In this model,
we have included the effects of the electrochemical
double layer at the pore interfaces. We aim at an
integrated approach to the frequency dependence
of porous materials and identify various relaxation
mechanisms.

In particular, we discuss four aspects of this field:
1. the high-frequency permittivity, including compari-
sons with mixture formulae;
2. model calculations of the dielectric spectrum, the
implications of such calculations and comparisons
with experiments;
3. the low-frequency relaxation due to the electro-
chemical double layer and its dependence on porosity,
grain size distribution and microgeometry;
4. the arcs found in so-called Argand diagrams, in-
cluding the situation where we have double-layer ef-
fects as well as electrode effects.

The materials that we have studied were artificial
sandstones impregnated with salty water, and poly-
propylene samples impregnated with an organic liquid
containing ions.

2. Theory
2.1. Relaxation processes
2.1.1. Double-layer effects
It has been shown, in the case of liquid-impregnated

porous solids, that the low-frequency permittivity can
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have very large values, which cannot be dismissed as
‘‘ electrode effects ’’ [2, 8, 9]. We have shown earlier
that this may be explained by diffusion effects in the
electrochemical double layer at the solid— liquid
boundary. The equation, originally obtained as an
approximation for dilute suspensions of spherical par-
ticles in an electrolyte [10, 11],
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was found to give good agreement with experimental
data [4, 5]. Here, e

=
is the value of the permittivity far

above the relaxation described by Equation 1 (but
below any other relaxations that may exist), r

0
is the

conductivity at zero frequency (far below the relax-
ation) and *r is the difference between the a.c. conduc-
tivities at frequencies above and below the relaxation.
The values of A are the same for both e@ and r

!.#.
. For

dilute suspensions of spherical particles of radius a, s is
roughly a2/2D, where D is the diffusion constant in the
electrolyte. We have recently [4] studied the behaviour
of the low-frequency relaxation for artificial sandstones
and the dependence on the conductivity of the liquid.
We found that the permittivity’s frequency dependence
had a strong resemblance to the prediction of Equation
1. One important discovery was that the value of s was
much lower than predicted in theories for dilute suspen-
sions. This was also found in the theoretical work on
non-dilute suspensions by Shilov and Borkovskaya
[12]. We also found a dependence of s on the conduct-
ivity of the liquid.

Equation 1 may give good agreement with experi-
mental data for the apparent permittivity of an in-
homogeneous sample, but it does not contain any
inherent information related to the microstructure of
the sample. Nor has it been theoretically justified for
the case of an impregnated porous solid. We note that
s, as well as the parameter A, should be dependent on
the grain size (or grain size distribution), on the pore
structure of the sample, and on the solid and the liquid
used. Furthermore, we note that Equation 1 cannot be
valid at all frequencies for the composite material as
a whole, but only for the double layer. Another relax-
ation which arises because of the heterogeneity of the
sample is obtained at higher frequencies. This relax-
ation is not accounted for in Equation 1. Finally, as we
have shown in a previous article [13], models of por-
ous materials can be used to estimate the variation in
the electric field within the heterogeneous material. As
the double layer can influence the distribution of the
electric field, it is of interest to include this layer in
model calculations, however.

2.1.2. Maxwell—Wagner polarizaton
In an inhomogeneous material, where at least one

of the components is conducting (and where the
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components do not have exactly the same electrical
properties), a dielectric relaxation will occur
owing to the inhomogeneity of the sample [14].
This relaxation is called the ‘‘Maxwell—Wagner ’’
relaxation. Formulae for the dielectric constant and
for the conductivity in the limits of high and low
frequencies, as well as the formula for the relaxation
time can be found, for example, in [15], for the
case of one material consisting of spheres, dilutely
suspended in the other material. Blum et al. [15]
measured the dielectric dispersion of polybead car-
boxylate microspheres and obtained a low-frequency
relaxation, which was attributed to double-layer ef-
fects. For high frequencies, they obtained another re-
laxation, which was attributed to Maxwell—Wagner
polarization.

2.1.3. Electrode effects
The conduction of charge through the interface be-
tween an electrode and an ionic conductor (such as an
ion-containing liquid) is not ideal. The penetration of
charge can be more or less blocked (the discharge of
ions is performed at a finite rate). Adsorption of ions
onto the electrode surface will also influence the
charge transport. In general, these limitations can be
modelled as a frequency-dependent impedance, in
series with the sample [16]. These effects may become
dominant at low frequencies and high values of the
fluid conductivity [4].

2.2. Direct-current conductivity and analogy
with low-frequency permittivity

The dependence of the apparent direct-current (d.c.)
conductivity of a porous non-conducting solid, im-
pregnated with a conducting liquid and having an
interface conductivity has been thoroughly studied
[17—20]. Johnson and co-workers [17, 18] found that,
when the conductivity of the pore fluid, r

&
, is high, the

following formula applies:
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Here &
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is the interface conductivity, " is a geometri-

cal parameter that can be described as an ‘‘ effective
pore radius ’’ and F is the so-called electrical forma-
tion factor which, in the presence of interface conduc-
tion, can be defined as
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where r
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is the effective conductivity of the com-
posite. For low values of r

&
, another expression is

obtained [21], which is still linear in +
4
. Asymp-

totically, there will be ‘‘ contributions ’’ to the total
conductivity from interface conduction that are pro-
portional to the interface conductivity. The ratio of

the proportionality coefficients at high and low values
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becomes

K"

APDe0(r)D2 dSB
APDE0

(r)D2 dSB
(4)

where E
0

and e
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are the electric fields in the high-r
&

limit and low-r
&

limit, respectively, and the integra-
tion is performed on the pore—solid interface.

For any value of r
&
, we can write [7]
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Here c is a parameter that is unity for high values of
r
&
and approaches K for low values of r

&
. The sub-

script ic is used to denote the contribution from inter-
face conduction. We noticed [7] that the parameter
c should exhibit a weak porosity dependence.

By analogy with Equation 5, we proposed [7] an
approximate relation for the low-frequency permittiv-
ity. Provided that the high values of the permittivity
are due to interface effects within the ‘‘bulk’’ of the
inhomogeneous sample, we proposed that
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where E
4
is an ‘‘ effective surface permittivity ’’.

It is here assumed that E
4
may depend on frequency,

but that it does not vary among samples made of the
same materials. The parameter " also occurs in a rela-
tion between the formation factor and the fluid per-
meability:

k"
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This means that data for both the formation factor
and the fluid permeability can be used to estimate
" [3].

2.3. Mixing formulae
For composite media, different kinds of mixture law
have been proposed for the effective dielectric con-
stant, e

%&&
. (For a more thorough review of such laws,

and their properties, see, for example, [22, 23].) The
two simplest cases arise when the components form
layers, either parallel to the applied electric field,
which is given by
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or in a series combination, which is given by
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Here e
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and e
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are the dielectric constants of materials
1 and 2, respectively, and u
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and u
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their volume

fractions. These two expressions can be generalized to
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Special values of b include the complex refractive
index model (CRIM) [24] as given by
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or the relation proposed by Looyenga [25] and by
Landau and Lifshitz [26], which is
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as well as the relation of Lichtenecker [27] :
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Among effective-medium theories, we can mention the
Bruggeman formula [28]
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and that of Maxwell Garnett [29] :
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Contrary to the earlier expressions, this theory is
asymmetric, treating one of the materials (indicated by
the subscript guest) as a ‘‘ guest ’’ medium, forming
spherical particles completely surrounded by the other
material (indicated by the subscript host), the ‘‘ host ’’
medium. This is also the case for the differential effec-
tive-medium (DEM) theory of Bruggeman [28] and
Hanai [30]:
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This equation has been extended by Boned and Pe-
yrelasse [31] to the situation where the inclusions of
guest material are covered by an interface layer. Their
result applies to rotationally symmetric randomly dis-
tributed ellipsoids:
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and analogosly for e
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The external surface of the interface layer is described
by
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and the surface of the solid inclusions by
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Also, f is the volume fraction of solid divided by the
volume fraction of interface layer, g

a
"a, g

b
"b and

A is the depolarization factor in the direction of the
applied field. For a sphere, A"1

3
.

3. Model calculations
3.1. General considerations
In a previous paper [2], we presented high values of
the permittivity at low frequencies for artificial sand-
stone samples, made of sand grains and small amounts
of epoxy. We interpreted these high values as due to
diffusion effects at the solid— liquid interface. We suc-
ceeded in using a simple model for predicting the
dielectric properties of brine-saturated porous solids
and obtained reasonable agreement with experimental
results.

This model, the GCM [32—34], treats in its simplest
form the solid material as ‘‘ grains ’’ of truncated
equal-sized spheres, placed on a lattice (Fig. 1a). The
size of the spheres is determined from the lattice used
and the selected porosity. More complicated versions
of this model exist, with grains of different sizes or
randomly placed [33].

In our version of the model [2, 35], we added a third
phase, corresponding to the electrochemical double
layer (Fig. 1b). As a crude model for the dielectric
properties of this third phase, we used the equivalent
circuit shown in Fig. 1c, where ¼ denotes a Warburg
impedance. In [2], we assumed no specific interface
conductivity; instead, we assumed that the interface
layer had the same high-frequency properties as the
bulk liquid.

In this paper, we use a more realistic model for the
electric properties of the interface layer, and assume
that it can be described by Equation 1. One drawback
of the GCM in the simplest version is the regular
structure of the composite material. One possible way
to simulate a more disordered structure would be to
use a DEM theory including an interface layer, such as
Equations 17—21. One drawback of the DEM theory
is that only one phase, namely, the host medium, is
continuous. In a real porous solid, such as a sand-
stone, both the solid and the pore fluid are continuous
throughout the material. In particular, the double

layer at the interface should be continuous.
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Figure 1 (a) Cross-section of one layer in the s.c. lattice for the
GCM. (b) The model of the interface and double layer (not necessar-
ily drawn to scale). (c) The equivalent circuit used to model the
properties of the interface layer in our earlier article [2].

3.2. Extended grain consolidation model
To calculate the apparent dielectric properties of the
composite, we used the method that was developed by
Shen et al. [34] for the GCM. Since the solid phase is
considered to consist of equal grains on a regular
lattice we can Fourier transform the geometry and
solve Maxwell’s equations in Fourier space. By divid-
ing the electric field in two parts according to
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where h
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has the value 1 in material 1 and 0 in material

2 (and vice versa for h
2
), fewer Fourier terms are

needed for achieving good convergence. We write the
Fourier series
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where a denotes summation over the different phases
and b

n
represent vectors in reciprocal space (in prin-

ciple, Equation 24 should be valid for all possible
vectors b
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where E
0j

is the component in the j direction of
the applied field and e

j
is the unit vector in the j

direction.
We extended this method to three-phase systems

and to complex frequency-dependent properties
[2, 35]. We also used the method for estimating the
maximum electric field within the different phases in
a composite subjected to an externally applied field
[13]. As in [2], we truncated the Fourier expansion
after the second-order term in the calculations pre-
sented here.

For the DEM theory, we use the equations of
Boned and Peyrelasse [31], Equations (17)—(21), as-
suming spherical grains with an interface layer of
constant thickness.

3.3. Calculation conditions
3.3.1. General remarks
To compare the results of the model calculations with
experimental data, we specified the parameter values
used in the calculations so that they corresponded to
a particular measurement. As described in Section
3.3.3, we used values of an intercept in a linear fit of
conductivity data to model the relaxation amplitude.
However, for the measurements on polypropylene
samples [5], we were not able to obtain such inter-
cepts, and we have accordingly only performed model
calculations for sandstones. (The dielectric spectrum
of the polypropylene samples were qualitatively very
similar to the sandstone spectra.) We assumed a fairly
low value of the liquid conductivity, in order to render
any electrode effects negligible.

In the GCM, we considered the material to consist
of spherical ‘‘ grains ’’ forming a regular lattice. The
porosity was assumed to be the same as for the actual
sample. We used a simple-cubic (s.c.) lattice in most of
the calculations, since this would give a geometry
where the solid particles were in contact but, for com-
parison, we also performed calculations using body-
centred cubic (b.c.c.) and face-centred cubic (f.c.c.)
lattices (in these two lattices, the particles are not in
contact at the values of the porosity used). Also, for
the DEM theory, we assumed the porosity to be the
same as that of the actual sample.

We let the diameter of the grains be 0.25 mm (the
median grain diameter of the actual sample) and as-
sumed the thickness of the interface layer to be one
Debye length, l

D
, (using an estimated value of the

diffusion constant, D, of 2.0]10~9 m2 s~1, which was
also used by Chew and Sen [10]). This would yield
a value of l

D
of 38 nm for the fluid conductivity

1 mS m~1, and an l
D

of 1.2 nm for the fluid conductiv-
ity 1 S m~1. The value of e@ of the bulk liquid was
assumed to be 80, and the conductivity of the bulk
liquid was assumed to be the same as that of the liquid
used for impregnation of the samples in the experi-
ments. The permittivity of the grains was assumed to
be 4.3 corresponding to quartz [36]; the grains were
not assumed to have any electrical conductivity.

We assumed that the dielectric properties of the
interface layer could be described by Equation 1,

where we put e

=
equal to the permittivity of the bulk
liquid (80). (r
0

is discussed below.) By using a differen-
tiation technique, as described in [4], we were able to
estimate the relaxation time, s, from experimental
spectra. We assume that the amplitude, A, is the same
both in the equation for the permittivity and in the
equation for the a.c. conductivity of the interface layer.

3.3.2. The value of r0

Theories of dilute colloidal suspensions, such as the
theory of DeLacey and White [37], predict a much
higher value of r

0
than of the conductivity increment,

*r, due to the relaxation and the ratio, r
0
/*r, of

these two parameters, increases with increasing liquid
conductivity. For the particle sizes (median diameter,
0.25 mm) and the liquid conductivities (around 10 mS
m~1 of main interest in our simulations) it would
appear as if the ratio r

0
/*r were so high that the

effect of the relaxation on the a.c. conductivity would
be negligible. However, it must be stressed that theor-
etical results for dilute suspensions are not necessarily
valid for high volume concentrations. The calculations
of Shilov and Borkovskaya [12] on non-dilute sus-
pensions of spherical particles imply that *r should
increase with increasing volume fraction of solid. As
will be shown in this paper, the emergence of contacts
between the solid particles (and their double layers)
increases the relaxation strength substantially. As we
have shown previously, the low-frequency relaxation
has a pronounced effect on the frequency dependence
of the a.c. conductivity [3], and this dependence can-
not be dismissed as electrode effects [2]. We can thus
assume that the low-frequency relaxation has a non-
negligible effect on the a.c. conductivity for a liquid-
impregnated porous medium and that *r should be
larger than r

0
, maybe by several orders of magnitude.

The value of r
0
is difficult to determine, as electrode

effects become dominant at frequencies higher than
where r

!.#.
has settled to a constant low-frequency

value. It must be stressed that r
0

by no means equals
zero, even if it is negligible. We have chosen to let r

0
have the same value as the conductivity, r

&
, of the bulk

liquid. For low values of r
&
(on which we concentrate),

*r<r
&

but, for higher values of r
&
, that does not

hold. Note that *r is not the relaxation amplitude in
the apparent conductivity of the composite material,
but the corresponding amplitude for the double layer
only (or for an idealized interface layer that is homo-
geneous and isotropic and has the same influence on
the effective properties of the composite as the real
double layer).

3.3.3. Values of the amplitude A
As an initial possibility, we choose A"0, to study the
dispersion in the absence of double-layer effects. In
this paper, we denote such a choice as ‘‘ no interface
conductivity ’’. For A'0, the calculated a.c. conduct-
ivity for frequencies above the double-layer relaxation
will be increased, as compared with calculations as-
suming A"0. In a previous paper [3], we noted that
the a.c. conductivity as a function of frequency dis-

played a ‘‘ plateau ’’ (this is also shown in this article
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later in Figs 2 and 3). The value at the plateau was not
directly proportional to the conductivity of the pore
fluid. Still, a linear dependence was found, but with
a finite intercept value in the limit r

&
P0. As we shall

see later, such a plateau is obtained also in our model
calculations when A'0. One could thus argue that
a suitable choice for A would be a value that would
yield an increase in conductivity at the ‘‘ plateau ’’ that
is equal to the ‘‘ intercept ’’ found in the r

&
P0 limit in

the experiments. For simplicity, we call such a choice
‘‘ low interface conductivity ’’. For a given value of A,
the increase in a.c. conductivity at the plateau is de-
pendent on the model used. Accordingly, we use differ-
ent values of A for the GCM and for the DEM model.
These values were obtained by systematically varying
the value of A in the model calculations, and compar-
ing the results with the case A"0.

Another choice would be to use a value correspond-
ing to the value of interface conductivity found in the
previous article [3] (it is in the range 0.1—0.3 lS). The
high-frequency conductivity of the interface layer is
then obtained as &

4
/l
D
, where &

4
is the measured

surface conductivity and l
D

is the assumed thickness of
the layer (one Debye length). This value would be
higher than the first choice owing to the deviations
from spherical shape of the grains, the non-regularity
of the grain packing and the rough grain surfaces. In
this paper, we call this value ‘‘ high interface conduct-
ivity ’’. The reason for using two different values in the
simulations is that the geometry of a real porous
medium is more complicated than in the simulations,
yielding a higher formation factor. The higher forma-
tion factor decreases the influence of the interface
relaxation on the apparent dielectric properties of the
composite material. Note that an increased relaxation
strength, *r, as well as an increased zero-frequency
conductivity, r

0
!r

&
of the double layer will increase

the effective conductivity of the composite. If we as-
sume a value of r

0
'r

&
, the value of A has to be

decreased in the simulations in order to fit the experi-
mental data.

3.3.4. Remark on the calculation conditions
It should be remarked that almost all the parameters
used (porosity, fluid conductivity, etc.) have been
measured separately. The only unknown parameters
are the value of r

0
(whose influence we so far consider

negligible) and the relaxation time, s, which thus could
be viewed as an ‘‘ adjustable parameter ’’. Yet, it
should be remarked that we obtained the value of
s used only from the shape of the log e@ versus
log(frequency) curve and not from the amplitude of
the curve. The amplitude, A, in Equation 1 is obtained
from measured values of the conductivity and from
the value of s.

4. Experiments
4.1. Materials
The samples used in the experiments described in this
paper are of two different types: artificial sandstones

and porous polypropylene samples.
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4.1.1. Artificial sandstones
These samples have been described in other papers [3,
38, 39]. They were made of Danish beach sand, to
which small amounts of epoxy (about 3 vol%) had
been added. The samples were deliberately construc-
ted to have a grain size distribution that was log-
normal by relative weight. The median grain diameter
was 0.25 mm. Four different series of samples were
constructed, having the standard deviations in the
log-normal distribution 0.25, 0.50, 0.75 and 2.0 (called
the S1, S2, S3 and S4 series, respectively) according to
the / scale (the / scale is defined as /"!log

2
d
'
,

where d
'

is the grain diameter in millimeters). Before
the epoxy was cured, the samples were subjected to
pressures of 0.2, 2, 5 or 10 MPa. Some samples sub-
jected to 10 MPa were also subjected to vibrations
before curing. The samples subjected to 0.2 MPa are
denoted by an E (as in sample S3E) and the samples
subjected to 10 MPa and vibrations are denoted by an
A. This preparation method yielded samples with por-
osities in the range of 0.19—0.46.

4.1.2. Polypropylene samples
These samples have been described in [5]. Poly-
propylene beads (Hostalen HH1414), manufactured
by Hoechst, were packed and heated to 165 °C. The
original distribution of grain sizes was found to be
roughly log-normal by relative weight, with a median
diameter of about 0.2 mm and a standard deviation of
about 0.5 on the / scale. For some samples, we delib-
erately altered the grain size distribution to attain the
median 0.25 mm and standard deviation 0.75 on the
/ scale.

4.1.3. Pore liquids
Two different kinds of liquid have been used: de-
ionized water, and a mixture of mono benzyl toluene
(MBT) and dibenzyl toluene (DBT), manufactured by
Prodelec.

We added different amounts of ions to both liquids.
To the water, sodium chloride was added (we used
water with conductivity values between 0.008 and
1.2 S m~1); to the MBT—DBT, we added tetraisoam-
myl ammonium picrate (here, the highest conductivity
attained at room temperature was 90 nS m~1).

4.2. Measurement techniques
Measurements on brine-impregnated sandstone sam-
ples were performed between 5 Hz and 13 MHz using
an HP4192 A impedance analyser. The instrument
was calibrated at 100 kHz.

Low-frequency measurements (1 kHz down to
0.1 mHz) were performed on the measurement system
of ABB Corporate Research in Västeras s [40]. This
equipment was used for the impregnated polypropy-
lene samples, as well as for measurements on samples
in vacuum, together with an HP4284 A ¸CR analyser,
which was used for frequencies up to 1MHz. For the

HP4284A, ‘ Open ’ and ‘Closed ’ calibrations were



performed, as well as ‘ Load ’ calibration for 100, 200
and 480 kHz.

The samples were placed in a test cell between brass
electrodes. We used a guard electrode to eliminate the
influence of conduction on the external surface of the
sample. The electrodes were mounted on plastic
screws, which enabled us to measure on samples with
different thicknesses (the thickness varied between
3 and 18 mm) and to achieve a good contact between
the sample and the electrodes. The samples were im-
pregnated in a vacuum chamber which was evacuated
to 0.1 Torr before letting the impregnation liquid
into it.

All measurements referred to in this paper were
performed at room temperature.

5. Results and discussion
5.1. Frequency dependence for

unimpregnated porous solids
In Figs 2 and 3, we show the frequency dependence of
the permittivity and of the a.c. conductivity for an
artificial sandstone sample and a polypropylene
sample, respectively. The porosities were 46% and
35%, respectively; the samples were not impregnated
and they were placed in vacuum during the measure-
ments. We note that the polypropylene sample has

Figure 2 (a) The permittivity and (b) the a.c. conductivity of an
artificial sandstone sample as a function of frequency. The porosity

was 46% (sample S2D).
very low dispersion. The dispersion of the sandstone is
larger, especially towards low frequencies. There also
appears to be a small relaxation around 10 kHz for
the sandstone. The conductivity of the sandstone is
low, but it increases towards higher frequencies, ap-
proximately as a power law, r

!.#.
Jxn, with n+

0.7—0.8. The conductivity of the polypropylene at low
frequencies appears to be lower than the detection
limit of the measurement system. (In fact, the meas-
ured conductivities at the lowest frequencies for the
polypropylene are sometimes negative, and we chose
to plot the modulus of the measured value in the
logarithmic plot.)

5.2. Porosity dependence
for unimpregnated porous solids

The permittivity at 480 kHz for artificial sandstone
samples in vacuum is shown in Fig. 4 as a function of
the porosity. There is some scatter but no clear de-
pendence on the grain size distribution. Yet, it is clear
that the permittivity decreases when the porosity in-
creases.

From the measured values of the porosity, and the
known permittivity of vacuum (equal to 1), we can fit
Equations 10—16 to the data to obtain estimations of
the permittivity e

4!/$
, of the sand grains. Results from

such computer fits are given in Table I, where we also

Figure 3 (a) The permittivity and (b) the a.c. conductivity of a poly-

propylene sample as a function of frequency. The porosity was 35%.
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Figure 4 The measured dielectric constant at 480 kHz for unim-
pregnated artificial sandstone samples as a function of porosity.

give the correlation coefficient, R. (It should be noted
that, in these fittings, we have used the porosity as the
dependent variable, as the effective dielectric constant
is not expressed explicitly in some expressions, such as
the Bruggeman—Hanai expression, Equation 16.) The
different equations yield varying predictions, but 5.0
appears to be a rather typical value for the equations
having a high correlation coefficient. Note, however,
that Equation 10, using b as an adjustable parameter,
yields a value of e

4!/$
"4.5.

These values can be compared with the value of
about 4.3 for e@ for quartz at 30 MHz [36].

5.3. Frequency dependence of impregnated
samples

In Figs 5 and 6, we show the dielectric spectrum of
impregnated samples. In Fig. 5, two sandstone sam-
ples are shown (having different porosities), whereas
two polypropylene samples are displayed in Fig. 6
(having different porosities and different pore fluid
conductivities). The dielectric properties of the two
systems are qualitatively very similar. Towards low
frequencies, the permittivity increases while the a.c.
conductivity decreases. We attribute this to diffusion
effects in the electrochemical double layer at the
solid—liquid interface. At intermediate frequencies, the
a.c. conductivity is almost independent of frequency.
At the highest frequencies, the a.c. conductivity starts
General b 10

to increase. This increase is accompanied by a de-
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Figure 5 (a) The dielectric constant and (b) the a.c. conductivity of
brine-impregnated artificial sandstone samples, having porosities of
46% (sample S1E) (f) and 28% (sample S2A) (j) . The conductivity
of the pore fluid was 63 mS m~1.

crease in the permittivity. (This decrease in permittiv-
ity is not always clearly seen for the sandstone
samples. We attribute this to the finite measurement
resolution, since the ratio e@@/e@ can be very high for the
brine-impregnated samples in the frequency range
where the decrease in permittivity occurs.) We had
earlier speculated [3] that this increase in a.c. con-
ductivity towards high frequencies might be an
instrumentation artefact in the HP4192 A since the
manufacturer explicitly states that the accuracy is less
for the highest frequency. However, since we obtained

a similar increase (in another frequency range) for the
TABLE I Comparison between different mixing formulae, giving their predictions of the permittivity of sand grains at 480 kHz, as well as
the correlation coefficient, R, for the fits of the different formulae to the experimental data

Formula Equation Predicted e@ R Notes

Maxwell Garnett 15 4.75 0.83 sand as host
Maxwell Garnett 15 6.5 0.77 sand as guest
Bruggeman (symmetric) 14 5.1 0.79
Bruggeman—Hanai 16 5.5 0.79 sand as guest
Bruggeman—Hanai 16 4.8 0.83 sand as host
Lichtenecker 13 5.9 0.78
Looyenga, Landau and Lifshitz 12 5.1 0.81
CRIM 11 4.8 0.83
4.5 0.84 b"0.82



Figure 6 (a) The dielectric constant and (b) the a.c. conductivity of
two MBT—DBT-impregnated polypropylene samples (f), porosity
of 35%, fluid conductivity of 53 nS m~1; (j), porosity of 25%,
having the standard deviation 0.75 in the log-normal grain size
distribution, fluid conductivity of 1.3 nS m~1.

polypropylene, it appears as if this increase is a real
effect (it should be noted that we have also obtained
such increases for artificial sandstones impregnated
with MBT—DBT). Fig. 6b also shows that the increase
in a.c. conductivity is shifted downwards in frequency
as the conductivity of the pore fluid is decreased. We
also note that Kenyon [41] and Holwech and Nøst
[42] obtained relaxations in the same frequency range
for sandstones and sintered glass bead samples, filled
with salty water. The most probable explanation
would be that the high-frequency relaxation is the
Maxwell—Wagner-type relaxation that was seen by
Blum et al. [15] for suspensions of polybead car-
boxylate microspheres. This is corroborated by the
fact that the relaxation frequency is roughly the same
as the theoretical value, using the formula for a dilute
suspension of solid particles in a liquid [15].

5.4. Comparison with calculations
In Fig. 7, we show the experimental results for one
sample together with data from the GCM simulations.
Fig. 7a displays e@ and Fig. 7b the a.c. conductivity,
r . The results from the DEM simulations are dis-

!.#.

played in Fig. 8. The porosity used in the model
Figure 7 (a) Permittivity and (b) conductivity from experiments (f)
and calculations using a s.c. lattice in the GCM with ‘‘ high ’’
interface conductivity (——), ‘‘ low interface conductivity ’’ (-----) and
‘‘ no interface conductivity ’’ (— - —). The porosity was 39%, the fluid
conductivity was 12 mS m~1, and the other parameters are as
specified in the text.

simulations was 39%. The conductivity of the pore
fluid was assumed to be 12 mS m~1, yielding a Debye
length of 11 nm. From experimental data, we obtained
the value of 1

30
s for the relaxation time s.

For the assumed bulk liquid conductivity of 0.012
Sm~1, the value of the conductivity in the interface
layer was for ‘‘ low interface conductivity ’’ 5.4 S m~1

for the GCM calculation and 9.3 S m~1 for the DEM
calculation.

The value of the interface conductivity for the perti-
nent sample found in [3] was 0.28 lS. For the ‘‘ high
interface conductivity ’’ case, this gives a value of
25.4 S m~1 for the conductivity in an interface layer
having a thickness of one Debye length.

We note that the GCM simulations with a higher
interface conductivity than the bulk liquid conductiv-
ity yield an increase in r

!.#.
at the highest frequencies.

As discussed above, such an increase is also seen in the
experimental data, while it is missing in the data for
the simulation without interface conductivity. There is
an increase also in the DEM conductivity, although it
is smaller in amplitude. We also note that, for the
DEM calculations, the high-frequency relaxation ap-

pears to be roughly in the same frequency range as
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Figure 8 (a) Permittivity and (b) conductivity from experiments (f)
and DEM calculations using ‘‘ high ’’ interface conductivity (——),
‘‘ low interface conductivity ’’ (-----) and ‘‘ no interface conductivity ’’
(— - —). Calculation parameters are as in Fig. 7.

the experimental data, whereas the GCM predicts
a higher frequency for this relaxation. Note that the
amplitude of the relaxation is strongly dependent on
the value used for the conductivity in the interface
layer, while the relaxation frequency appears to be
more weakly dependent on this value. It should be
remarked that we only observe one relaxation at high
frequencies in the DEM results: it is therefore prob-
able that the high-frequency relaxations found in ex-
periments, as well as in GCM and DEM calculations
are due to the same process. The high-frequency relax-
ation is not noticeable in the plot when we have no
interface conductivity; however, we have previously
shown [6] that a strong high-frequency relaxation can
be obtained without assuming interface conductivity,
but instead assuming a non-spherical grain shape.
Since the sand grains can hardly be considered spheri-
cal in shape, it is probable that the use of ellipsoidal
grain shapes in the DEM calculations would yield
better agreement with experiments also for the size of
the high-frequency relaxation. It should be stressed
that the Maxwell—Wagner relaxation does not disap-
pear in systems without surface conductivity; it only
becomes negligibly small. A similar effect was ob-
tained by Endres and Knight [43] for an effective-

medium theory including an interface layer. The value
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of r at the ‘‘ plateau ’’ in the medium-frequency range
is much higher for the simulations with a surface
conductivity than for the experimental data; this is due
to the simplifications in the simulation (assuming
truncated spheres of the same size with smooth surfa-
ces produces a less obstructed path for ions in the bulk
liquid, even in the DEM where this effect is also seen
to some extent). The increase is due to enhanced
conduction in the bulk fluid; for low and intermediate
frequencies, we effectively obtain a larger frequency-
independent conductivity term in the model calcu-
lations.

At low frequencies, we have very good agreement
between the predictions of e@ from the simulations
using a low interface conductivity and the experi-
ments. It thus appears that r

0
is of a different order of

magnitude from *r, and that it can be neglected. For
r
!.#.

, the decrease with decreasing frequency starts at
roughly the same frequency in both simulations and
experiments. As the values at the ‘‘ plateau ’’ are differ-
ent, the experimental and theoretical values of the
conductivity cannot be compared in detail at low
frequencies.

We also find that, for the simulation using no inter-
face conductivity, the low-frequency dependence of e@
does not agree with experiments. We are thus compel-
led to draw the conclusion that only the introduction
of an interface conductivity can explain the measured
dielectric frequency spectrum since we previously re-
futed the possibility of electrode effects as the cause of
the high values of the permittivity [2, 4].

Around 10 kHz, there is disagreement between the
simulated data and the experimental e@ values. In this
region, tan d (i.e., the ratio e@@/e@) becomes very large,
and the experimental values for e@ are therefore uncer-
tain in this region, since the measurement resolution is
finite. It should also be noted that the GCM predic-
tions of the high-frequency value of e@ are in better
agreement with the experimental values than are the
DEM predictions.

For comparison, we have also performed simula-
tions using b.c.c. and f.c.c. lattices. Results from such
simulations are shown in Fig. 9, where we also com-
pare with the results from GCM calculations using
a s.c. lattice and results from DEM calculations. Now,
we only compare calculations using ‘‘ high interface
conductivity ’’. As stated above, in the b.c.c. and f.c.c.
simulations the solid particles are no longer in contact
for the porosity used. We note that the amplitude of
the low-frequency relaxation is lower in these cases
than for the simulations using a s.c. lattice. This is also
the case for the DEM calculations. Similarly, the value
of the parameter A used in the calculations using
‘‘ low ’’ interface conductivity had to be higher in the
DEM theory than in the GCM to obtain the same
increase in conductivity. This can be explained from
the assumption in the DEM theory that the particles
(and the interface layers) are not in contact, and the
interface layer is not continuous throughout the ma-
terial. The differences in low-frequency permittivity
between the three different models where no contact is
assumed between the grains are very small. In particu-

lar, the similarity between the results from GCM



Figure 9 Results for (a) the permittivity and (b) the conductivity for
the GCM using a s.c. lattice (——), using a b.c.c. lattice (——) and
using a f.c.c. lattice (— - —), compared with results for DEM (-----).
Parameters are as in Fig. 7. Note that the simulation results using
a b.c.c. lattice and the results using a f.c.c. lattice are indistinguish-
able in (a) and fall onto the same curve.

calculations using a b.c.c. and a f.c.c. lattice is remark-
able, since they cannot be resolved in Fig. 9a. It thus
seems as if the exact geometry is of small importance,
with the exception of whether the grains are in contact
or not. However, for the high-frequency relaxation, we
see that the amplitude differs widely between the dif-
ferent models. Apparently, the exact geometry is of
substantial importance for the strength of this relax-
ation. A random arrangement of the solid particles
may yield an even larger relaxation, and also give
a distinct relaxation in the model material without
interface conduction. Maybe the smoothness of the
solid particles also influence the strength of this relax-
ation.

We note that the predictions of the conductivity
using a s.c. lattice has a strange feature; at roughly
100 kHz, it decreases somewhat with increasing fre-
quency. We attribute this to the non-ideality of the
calculations; we have only performed the calculations
up to the second order in the Fourier expansion of the
electric field. Higher-order calculations may thus re-
move this artefact. For the b.c.c. and f.c.c. lattices,
where the solid particles do not touch for this particu-
lar value of porosity, this artefact is considerably less

pronounced.
Figure 10 An MBT—DBT-impregnated polypropylene sample
(data as in Fig. 6 for the sample having 35% porosity), and a com-
puter fit to Equation 1 for low frequencies. The fit yielded the
parameters A"34 000, s"1890 s and e

=
"4.4.

Figure 11 The permittivity of the same sample as in Fig. 10, with
the fitted low-frequency dispersion subtracted.

It would be tempting to use a model where the solid
grains vary in size and are arranged randomly instead
of on a regular lattice. Since such calculations are
much more complicated, we leave that for future
work.

One may ask whether the two relaxations obtained
using these models are the only relaxations that occur.
We know, for example, that bulk water has a relax-
ation at roughly 20 GHz at room temperature [44]
but, if we restrict ourselves to frequencies where the
dispersion of the constituent materials may be con-
sidered negligible, do we then obtain more relax-
ations?

In Fig. 10, we show the dielectric spectrum of
a polypropylene sample impregnated with MBT—
DBT containing picrates. The reason for showing data
for polypropylene is its low dispersion, whereas
measurements on sandstone samples in vacuum
showed some dispersion. We also show a computer fit
to Equation 1 for the low-frequency relaxation. The
agreement between the fit and the measured values is
good. In Fig. 11, we have plotted the measured e@,

minus the prediction of the above-mentioned fit to
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Equation 1. There seems to be only one relaxation left
(the Maxwell—Wagner relaxation), and the value of
this *e@ is fairly constant at low frequencies, down to
about 0.1 Hz. Below this frequency, the double-layer
relaxation is so dominant that it is not possible to
extract data with any precision when the effect of the
double-layer relaxation is subtracted.

For low frequencies, and high fluid conductivities,
we have shown [4] that there appears to be another
dielectric relaxation, which we attributed to electrode
effects. However, except for the electrode effects, there
thus appear only two relaxations when the dispersion
of the constituents is negligible.

5.5. Low-frequency relaxation: dependence
on porosity and grain size distribution

As discussed above, we have previously found [4] that
a fit of the low-frequency relaxation to Equation
1 yields a dependence of the fluid conductivity for
A that is comparatively weak, whereas the corres-
ponding dependence for the relaxation time, s, is
stronger. The scattering of the data was too great to
draw any definite conclusions on the exact depend-
ence, but the data seemed to follow power laws, with
s and A varying roughly as

s"s
0
r~0.5
-*26*$

A"A
0
r0.25
-*26*$

(26)

Using the same technique as in our previous paper
[4], we have calculated A and s for various values of
the fluid conductivity for all our samples. In Figs. 12
and 13, we show the dependences on fluid conductiv-
ity of s and A, respectively, for another sample than in
our previous paper (sample S3E having 44% poros-
ity). Also here, data seem to follow roughly the de-
pendence of Equation 26, and similar dependences
have also been found for other samples (still showing
considerable scatter). We have fitted the obtained de-
pendences to Equation 26, in order to obtain values of
A

0
and s

0
for all our samples. The dependences of

s
0

and A
0

on porosity are shown in Figs. 14 and 15,
respectively. The different grain size distributions have
different symbols in these plots. There is considerable
scatter, and no clear dependence on porosity for
s
0
can be discerned. There appears to be a dependence

on grain size distribution, however, with the widest
distribution having the highest values of s

0
. Note that

the average value of a2 increases with increasing stan-
dard deviation for a log-normal distribution [45],
which would imply (following the theory for dilute
suspensions of spheres) that the value of s would
increase as the grain size distribution widens. A

0
ap-

pears to increase weakly with increasing porosity; it
also appears to increase with increasing width of the
grain size distribution. We can also check whether the
approximate relation in Equation 6, that we found
earlier [7] to be roughly valid in the range where
e@Jx~1.5, also applies to A

0
. Hence, we plot A

0
as

a function of 1/"F. Such a comparison is shown in
Fig. 16, with a computer fit to a proportionality. The
results indicate that Equation 6 may hold, but the
large scatter of points prevents a firm conclusion. It

should be stressed that there are several sources of
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Figure 12 The variation in s with water conductivity for an impreg-
nated artificial sandstone sample having 44% porosity (sample
S3E). (— — —), a computer fit to the relation s"s

0
r~0.5

-*26*$
.

Figure 13 The variation in A with water conductivity for the same
sample as in Fig. 12. (— — —) a computer fit to the relation
A"A

0
r0.25

-*26*$
.

Figure 14 The porosity dependence of s
0
for the artificial sandstone

samples. (f), S1 series; (]), S2 series; (r), S3 series; (j), S4 series.

error; firstly the measurements of the electrical con-
ductivity and the calculations of the formation factor
as well as the measurements of the fluid permeability

(needed to obtain "), secondly the measurements of



Figure 15 The porosity dependence of A
0

for the artificial sand-
stone samples. (f), S1 series; (]), S2 series; (r), S3 series; (j), S4
series.

Figure 16 A
0

as a function of 1/"F. (— ——), a computer fit to a pro-
portionality.

the permittivity may have errors, thirdly Equation
1 may not be exactly correct in each case, and fourthly
Equation 26 may be an approximation to the real
dependence. We also assume that c in Equation 6 does
not vary among the samples. Still, the agreement is not
unreasonable.

5.6. Impregnated samples: Argand
diagrams

In Fig. 17, we show measured dielectric data for a typi-
cal brine-impregnated artificial sandstone (sample
S2B; porosity, 39%; fluid conductivity, 86 mS m~1).
The data are displayed in an Argand diagram, i.e., the
imaginary part of the resistivity, q@@, is displayed as
a function of the real part of the resistivity, q@.

We obtain two arcs in the diagram. None of the arcs
is obtained in its entirety, but some characteristics
should be noted. It appears as if the low-frequency arc
(at high values of q@) does not intercept the q@ axis at
a right angle in its low-q@ end, whereas the high-fre-
quency arc appears to intercept the q@ axis roughly at

a right angle. From this, one could surmise that the
Figure 17 qA as a function of q@ for a brine-impregnated sandstone
sample. The fluid conductivity was 86 mS m~1, and the sample
porosity was 39% (sample S2B).

Figure 18 The high-frequency arc of Fig. 17. (-----), a computer fit
to a semicircle with the centre on the q@ axis.

high-frequency arc is almost a semicircle (as would be
obtained from an equivalent circuit consisting of an
ideal capacitor in series with an ideal resistor).

As is shown in Fig. 18, the high-frequency arc can
be fitted very well to a semicircle. However, the
semicircle obtained from the fit has a high-frequency
intercept with the q@ axis different from zero value.
Similar non-zero intercepts have been obtained from
other measurements on brine-impregnated porous
solids [46, 47] as well as for water-containing cement
[48]. Since the high-frequency part is missing (owing
to the frequency limitations of the measurement
equipment), the accuracy of the fit in that part of the
diagram is highly questionable.

We thus have the possibility that the approximation
to a semicircle (with the centre on the q@ axis) is
invalid. If there is a dielectric relaxation within the
frequency range of the arc, there should be deviations
from such a semicircle. As we have shown above, there
is a relaxation, the Maxwell—Wagner relaxation,
which occurs in the pertinent frequency range. Still, if
the relaxation occurs close to the frequencies where q@@

has its maximum, it can be argued that the angles
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Figure 19 q@@ as a function of q@ for an MBT—DBT-impregnated
polypropylene sample. The liquid conductivity was 53 nS m~1, and
the sample porosity was 25%.

between the arc and the q@ axis can indeed be 90 °,
since both e@ and r

!.#.
may be almost independent of

frequency far from the relaxation frequency. As noted
above, we have performed measurements on porous
samples consisting of sintered polypropylene beads,
impregnated with a MBT—DBT liquid containing
ions. An Argand plot from such a measurement is
shown in Fig. 19. Here, we obtain the whole high-
frequency arc, and it is clearly seen that the results
deviate from an ideal RC circuit (for which the max-
imum value of qA is equal to half the maximum value
of q@). Still, the intercepts with the q@ axis are almost at
right angles. For artificial sandstones, impregnated
with low-conductivity brine solutions, the deviations
from an RC arc are even smaller. (Data from sand-
stone samples impregnated with MBT—DBT suffer
from the dielectric dispersion of the sand grains, which
is not negligible at the frequencies where the arc ap-
pears. For such samples, the low-frequency intercept
of the arc with the q@ axis does not appear to be at
a right angle. Polypropylene has much less dispersion
than sand.) It should be mentioned that the shapes of
the high-frequency arcs are similar for all sandstone
samples when impregnated with the same liquid. In
particular, when the data are fitted to a semicircle, the
ratios, q

)&
/q

.&
, of the values at the two intercepts with

the q@ axis (see Fig. 18) appear to be roughly the same
for all samples, when the same impregnation liquid is
used. The ratio is dependent on the conductivity of the
pore fluid, however. It accordingly appears as if
a finite value of q

)&
, obtained from a fit of the data to

a semicircle, cannot be explained as an artefact of the
measurement apparatus, as a high-frequency offset
resistance due to the apparatus could hardly be pro-
portional to the intermediate-frequency resistance of
the sample used.

The low-frequency arc is shown in Fig. 20. We have
data only for a part of the arc, and we cannot say how
the low-frequency part of this arc would appear. Still,
we note that the high-frequency part of the arc does
not appear to intercept with the q@ axis at a right angle.
When increasing the conductivity of the liquid (but

using the same sample), the angle appears to increase,
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Figure 20 The low-frequency arc of Fig. 17 (f), together with the
low-frequency arc of the same sample, impregnated with a liquid
having the conductivity 0.0235 Sm~1 (j).

Figure 21 The Argand diagram of a simulated sample, having a di-
electric spectrum according to Equation 1. e

=
was 80, r

0
was 2 mS

m~1, s was 1/6p and A was 3]106 (f) and 3]107 (j).

as is also shown in Fig. 20. In fact, Equation 1 yields
a similar behaviour. In Fig. 21, we show the Argand
diagram for dielectric spectras, obeying Equation 1.
We let e

=
be 80, r

0
be 2 mS m~1, s be 1/6p s and A be

3]106 and 3]107, respectively. The full low-fre-
quency arc is pear shaped, having a low-frequency
intercept with the q@ axis at a right angle, whereas the
high-frequency intercept is at a smaller angle than 90°.
We also note that this angle increases as the amplitude
A increases; in this example, the lower amplitude
yields an angle of approximately 33°, whereas the
higher amplitude yields an angle of approximately 46°.

For low frequencies, and high values of the liquid
conductivity, a third relaxation appears, which we
have attributed to electrode effects [4]. The low-fre-
quency Argand diagram for such a sample, impreg-
nated with a brine solution having a conductivity of
0.34 S m~1 is shown in Fig. 22a. It appears as if we
obtain two arcs, that almost coincide. In Fig. 22b, we
show d(ln e@)/d(ln f ) as a function of frequency for the
same sample. Note that there appears to be a cross-
over at roughly 1 kHz, from a low-frequency region,
showing an almost constant value, to an intermediate-

frequency region, with a much more distinct



Figure 22 Data for a sample (S2B; porosity, 39%) impregnated
with salty water having 0.34 S m~1 conductivity. (a) The low-
frequency arc of the Argand plot. (b) d(ln e@)/d(ln f ) as a function of
frequency.

frequency dependence. We have previously [4] inter-
preted such behaviour as a transition from the domi-
nance of electrode effects at low frequencies to the
dominance of the effects of the double layer in the bulk
sample at higher frequencies. The arcs appear similar
(the capacitors may be frequency dependent).

for other samples (although the region where the
Figure 23 Argand plot for sample S2B (porosity, 39%) impregnated
with salty water having a conductivity of 0.13 S m~1. The data were
measured between 1 mHz and 1 kHz.

lowest-frequency electrode arc becomes dominant can
vary among the samples and with fluid conductivity).
We have tried to fit a semicircle to the arc that domin-
ates at the lowest frequencies; we found that it inter-
cepts with the q@ axis at 50—55°. Note that an arc
intercepting the q@ axis at the angle 45° is obtained
from a Randles circuit, which is used to model elec-
trode impedance [49].

We also report results for lower frequencies, down
to 1 mHz. In Fig. 23 we show an Argand plot for
a sample, measured between 1 mHz and 1 kHz. The
impregnation liquid had the conductivity 0.13 S m~1,
and almost the entire curve should be dominated by
the electrode effects (the only exceptions can be a few
points at the low-q@ end). We note that the data clearly
display an arc, and not a straight line. At the lowest
frequencies (high-q@ part), we obtain an increase in qA;
this may be due to a blocking capacitance of the
electrodes.

5.7. Suggested equivalent circuit
Our results suggest an equivalent circuit for the sys-

tem as in Fig. 24. Here, the ‘‘ double-layer relaxation ’’
Figure 24 Suggested equivalent circuit for liquid-impregnated porous solids, where the dispersions of the constituent materials are negligible
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component is assumed to be described by Equation
1 or by a similar dependence. The ¼ element de-
scribes a Warburg impedance [49]. As an initial ap-
proach, R

1
, R

2
, C

1
and C

2
may be assumed to be

frequency independent but, in a more general ap-
proach, C

1
or C

2
could be assumed to be frequency

dependent, for example, constant-phase elements
(varying as C

0
(ix)~a). The need for two RC circuits

arises from the Maxwell—Wagner relaxation at high
frequencies. The interface layer should form a perco-
lating path throughout the porous material and we
accordingly let it be in parallel to the RC circuits.
However, the model calculations have shown that the
amplitude of the Maxwell—Wagner relaxation is de-
pendent on the strength of the double-layer relaxation.
It may thus be physically more correct to split the
double-layer relaxation into two parts, each in parallel
to either of the RC circuits, to render the Max-
well—Wagner relaxation dependent on the amplitude
of the double-layer relaxation.

The Randles circuit used for describing electrode
effects may also be more complicated than shown in
Fig. 24. For example, the capacitor C

%-
may also be

a constant-angle element.

5.8. High-frequency permittivity:
porosity dependence

For the high-frequency measurements, we have no-
ticed a slight increase in capacitance with increasing
frequency for frequencies above 4 MHz. We interpret
this as an instrumentation artefact, as the manufac-
turer explicitly declares that the accuracy of the equip-
ment is less good at the highest frequencies. Normally,
we found that the frequency dependence around
4 MHz is rather weak, and we thus use the value of e@
at 4 MHz as a ‘‘ high-frequency ’’ value. In Fig. 25, we
show the value of e@ at 4 MHz for a typical sample
(sample S1E, having 46% porosity) as a function of the
fluid conductivity. For low values of the fluid conduct-
ivity, e@ appears to be constant, whereas it appears to
decrease with increasing fluid conductivity for con-
ductivities larger than 50 mS m~1. This is probably an
effect of the Maxwell—Wagner relaxation, which
should move upwards in frequency as the fluid con-
ductivity is raised. The values of e@ at 4 MHz at fluid
conductivities below 50 mS m~1 accordingly appear
to be a good measure of the high-frequency permittiv-
ity of the brine-sand system. (Poley et al. [50] found
that the permittivity is independent of salinity for
sufficiently low salinities and sufficiently high frequen-
cies. The value of 50 mS m~1 for a frequency of 4 MHz
is consistent with their data if we assume that the
relaxation frequency is proportional to the liquid con-
ductivity.)

In Figs. 26 and 27, we show the obtained high-
frequency permittivity as a function of porosity. We
also include the porosity dependences, predicted by
the mixing theories discussed previously (Equations
10—16). In the theoretical calculations, we assumed
e
4!/$

to be 4.3. We also used Equation 10 with b as an
adjustable parameter to obtain the optimal fit; the

optimal value of b was found to be 0.68.
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Figure 25 The permittivity at 4 MHz for a brine-impregnated artifi-
cial sandstone sample having 46% porosity (sample S1E) as a func-
tion of the fluid conductivity.

Figure 26 The permittivity at 4 MHz for low fluid conductivity of
brine-impregnated artificial sandstones as a function of
porosity. (——), calculation according to the Maxwell Garnett ex-
pression (Equation 15); (-----), calculation according to Equation
(10), having b as an adjustable parameter; (— —), calculation accord-
ing to the CRIM equation (Equation 11); (— - —), calculation accord-
ing to the Lichtenecker equation (Equation 13).

The best agreements between model predictions
and experiments were obtained with the Maxwell
Garnett expression (Equation 15) and with Equation
10 using b as an adjustable parameter. The other
expressions show deviations from the experimental
data, particularly at low values of the porosity. The
Lichtenecker formula has the strongest deviation from
the experimental results of all the formulae used; it
does not even appear to approach the experimental
data at higher values of porosity.

Note, however, that for the highest values of the
porosity the Maxwell Garnett expression and Equa-
tion 10 using b as an adjustable parameter start to
deviate from the behaviour of the experimental data,
while the CRIM and the Bruggeman—Hanai expres-
sions here have slightly better agreement with experi-

ments.



Figure 27 The same data as in Fig. 26, together with calculations
according to the Bruggeman—Hanai expression (Equation 16)
(——), to the expression of Looyenga and of Landau and Lifshitz
(Equation 12) (— - —), to the symmetric Bruggeman expression (Equa-
tion 14) (— —) and to the Maxwell Garnett expression (---m---) and
the Bruggeman—Hanai expression (---j---), treating water as the
guest phase.

Finally, we have also examined the effect of letting
the water function as the guest phase in the asymmet-
ric models. As is shown in Fig. 27, those results devi-
ate considerably from the experimental data.

6. Conclusions
For a liquid-impregnated porous solid, where the di-
electric dispersions both of the bulk liquid and of the
bulk solid are negligible, we find that two dielectric
relaxations arise, as well as a third process which we
attribute to electrode effects.

Using model calculations, we found that the surface
conductivity and the low-frequency permittivity found
in artificially made sandstone samples are related in
a consistent way.

The surface conductivity was found to cause a po-
larization of Maxwell—Wagner type at high frequen-
cies. This relaxation would probably occur in real
samples even without interface conduction, but it
would then be smaller in amplitude. In our models, the
high-frequency relaxation almost disappeared when
no interface conductivity was used. The strength of the
relaxation has a pronounced dependence of the ge-
ometry of the porous solid, however.

In the experiments we could only see the lower part
of this polarization process. Nevertheless, the relax-
ation frequency predicted by the DEM theory is of the
right order of magnitude, while the GCM predicts
a much higher relaxation frequency. At low frequen-
cies, we observe an increase in the values of e@. We
have previously shown [2, 4] that this increase ema-
nates from the ‘‘ bulk sample ’’. To model this effect, we
assumed that the frequency behaviour of the interface
varies according to Equation 1. Here, we found that
the low-frequency conductivity, r

0
, of the interface

layer is negligible, compared with the amplitude of the
low-frequency relaxation, at least for low values of r

&
.

We also noted that the exact geometry (for a given
porosity) seems to be of little importance for this

relaxation.
In a so-called Argand plot, the dielectric spectrum
gives rise to two arcs. The high-frequency arc deviates
somewhat from a semicircle, something which we at-
tribute to the Maxwell—Wagner relaxation which oc-
curs in the frequency range of the high-frequency arc.
The low-frequency arc intercepts at its high-frequency
end with the q@ axis at an angle smaller than 90°. The
angle apparently increases with increasing conductiv-
ity of the fluid. The full arc would probably appear to
be pear shaped; however, at still lower frequencies,
electrode effects become dominant. Such effects ap-
pear roughly as the response of a Randles circuit. We
also tested several mixing rules. The scatter of the data
for unimpregnated samples made evaluation of the
different formulae difficult. However, it should be
noted that, for asymmetric formulae, better agreement
was obtained when the sand grains were used as a host
material than when they were used as a guest material.
For impregnated samples, we found that the Maxwell
Garnett formula (Equation 15), having the sand grains
as the guest material, yielded the results that showed
the best agreement with experimental data.
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